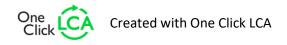


ENVIRONMENTAL PRODUCT DECLARATION


IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

FläktGroup iQ STAR WEGA® II CHILLED BEAM FläktGroup AB

EPD HUB, HUB-1979

Published on 15.09.2024, last updated on 15.09.2024, valid until 15.09.2029.

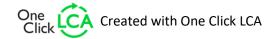
GENERAL INFORMATION

MANUFACTURER

Manufacturer	FläktGroup AB
Address	Fläktgatan 1, 553 02 Jönköping, Sweden
Contact details	info.se@flaktgroup.com
Website	https://www.flaktgroup.com/

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 und ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Manufactured product
Category of EPD	Third party verified EPD
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Zulnasree Binadam
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☐ External verification
EPD verifier	Lucas Pedro Berman, as an authorized verifier acting for EPD Hub Limited


The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	FläktGroup iQ STAR WEGA® II CHILLED BEAM
Additional labels	iQ STAR WEGA® II CHILLED BEAM
Product reference	-
Place of production	Jönköping, Sweden
Period for data	2023
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3	%

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 unit of Wega Chilled Beam
Declared unit mass	35 kg
GWP-fossil, A1-A3 (kgCO ₂ e)	2,00E+02
GWP-total, A1-A3 (kgCO₂e)	1,89E+02
Secondary material, inputs (%)	17.1
Secondary material, outputs (%)	98.4
Total energy use, A1-A3 (kWh)	861
Net freshwater use, A1-A3 (m³)	1.44

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

ABOUT FLÄKTGROUP

FläktGroup is a leader in air technology, delivering best in class, innovative and energy-efficient solutions to ensure comfort, safety, and performance, whilst reducing customer's carbon footprint. FläktGroup's premier brands, have been setting technological standards for more than 100 years and can fulfil the most demanding customer requirements.

Headquartered in Germany, FläktGroup operates all over the world with production sites across Europe, Asia, and the USA.

FOR WELLBEING, SAFETY, AND ENVIRONMENT

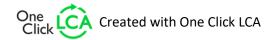
Today we spend more than 90% of our time indoors and the air we breathe has a big impact on our performance, wellbeing, and comfort. Our buildings need mechanical ventilation and air treatment to deliver safe and comfortable building spaces.

At the same time buildings account for up to 40% the energy consumption where ventilation systems play a big part. The challenge is to lower the energy consumption and here FläktGroup is one of the key drivers providing superior quality products whilst protecting the environment.

OUR PURPOSE

Our purpose is simple: we care for your air whilst protecting the environment. BEING AN EMPLOYER OF CHOICE

As we aim to be an employer of choice, this comes with a responsibility.


We need to act and care as responsible Corporate Citizen for our people, our community, and our shared environment. We also must deliver sustainable solutions to help our customers to fulfil or exceed environmental demands and legislation.

FläktGroup is committed to deliver smart energy efficient ventilation solutions that make buildings sustainable, comfortable, healthy, and safe. FläktGroup delivers on this commitment while creating an environment of equality, respect, and fairness and by adhering to the highest level of ethical and compliance standards. FläktGroup's roadmap is aligned with the UN sustainability goals and the European Green Deal objectives and is translated into annual investments that support our objectives.

PRODUCT DESCRIPTION

The WEGA II chilled beam is an active chilled beam system for ventilation, cooling and heating. This diffusion system offers comfort and flexibility thanks to the Flow Pattern Control combined with adjustable induction. The Pi advanced function gives even more flexibility adding a Demand Controlled Ventilation function to the system. The air diffusion follows building occupancy and makes the HVAC system highly efficient. WEGA II with Pi function is pressure independent and makes the system suitable for many duct work system types. WEGA II is also available in X-flow version for high air flow suitable for conference room without any extra diffusers.

Further information can be found at https://www.flaktgroup.com/.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin					
Metals	98.63	EU					
Minerals	-	-					
Fossil materials	1.37	EU					
Bio-based materials	-	-					

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	-
Biogenic carbon content in packaging, kg C	2.69

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 unit of Wega Chilled Beam
Mass per declared unit	35 kg
Functional unit	-
Reference service life	-

The reference service life of the product is depending on the conditions of use. Under good conditions it can be longer than 25 years.

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0.1% (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	tage		mbly	Use stage							Ei	nd of l	ife sta	Beyond the system boundaries				
A1	A2	А3	A4	A5	B1	B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4											D		
×	×	×	×	×				MND				×	×	×	×		×		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling	

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

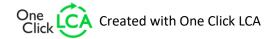
The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Metal coils are purchased and received from the steel manufacturer via truck. These are then cut using a laser, punched, and subsequently bent. Depending on the part that needs to be bent, this is done either by a robot or manually,

where an operator feeds it into a manual press brake. The insulation used in the chilled beam is cut using a water jet. After that, the various parts of the chilled beams are shaped according to the required forms.

Once this is completed, the parts that need to be painted are sent to the paint shop and then proceed to an assembly station where all the parts are assembled. After assembly, a leak test is conducted to check for air and water leakage. Once this is completed, photos are taken as a precautionary measure to allow for traceability in case of any issues. After this, the product is packed on custom-built pallets, and plastic is placed on the sides of the chilled beam to prevent dirt from entering. Finally, protective wrapping is applied to safeguard the product

TRANSPORT AND INSTALLATION (A4-A5)

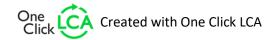

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The transportation covers the delivery for the final product to the construction site. It also covers the spills of packaging material. Material loss of the chilled beam during the installation phase is estimated to be zero.

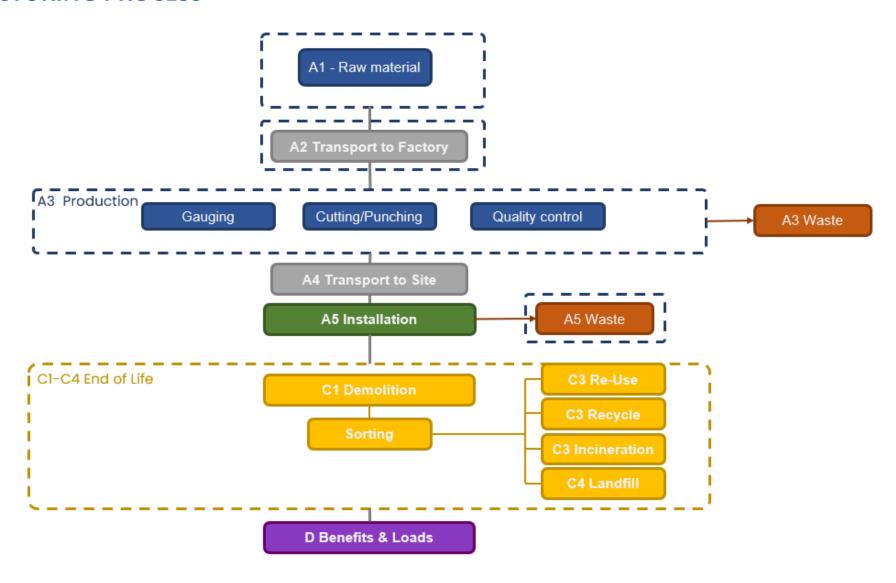
PRODUCT USE AND MAINTENANCE (B1-B7)

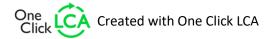
This EPD excludes the products use phase. The impacts during this phase vary depending on usage patterns and should be addressed separately within a comprehensive evaluation of specific construction projects.

Air, soil, and water impacts during the use phase have not been studied.



PRODUCT END OF LIFE (C1-C4, D)


The chilled beam is assumed to be dismantled using hand tools (C1) and these are then transported 5km to the local recycling site (C2). At the recycling site the product is dismantled into different categories where each raw-material is divided into each category such as different kinds of metals and plastics, depending on material the average recovery of material differs. (C3). The remaining that is not recycled is then taken to landfill for disposal (C4). The recycled materials are then credited in module D.



MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

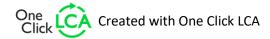
CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

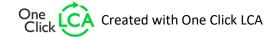

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	%

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.8, Plastics Europe, Federal LCA Commons and One Click LCA databases as sources of environmental data.



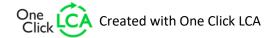
ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	1,93E+02	3,45E+00	-7,61E+00	1,89E+02	2,28E+00	1,20E+01	MND	3,34E-03	7,78E-01	1,42E+00	2,54E-02	-5,87E+01						
GWP – fossil	kg CO₂e	1,93E+02	3,45E+00	4,09E+00	2,00E+02	2,28E+00	2,63E-01	MND	3,33E-03	7,77E-01	1,42E+00	2,54E-02	-5,80E+01						
GWP – biogenic	kg CO₂e	0,00E+00	0,00E+00	-1,17E+01	-1,17E+01	0,00E+00	1,17E+01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
GWP – LULUC	kg CO₂e	2,00E-01	1,54E-03	1,21E-02	2,14E-01	9,10E-04	1,06E-04	MND	7,80E-06	4,64E-04	1,35E-03	4,15E-06	-6,94E-01						
Ozone depletion pot.	kg CFC- ₁₁ e	6,54E-06	7,85E-07	1,59E-06	8,91E-06	5,27E-07	2,81E-08	MND	1,69E-10	1,70E-07	9,59E-08	1,50E-09	-4,35E-06						
Acidification potential	mol H⁺e	1,53E+00	1,54E-02	4,46E-02	1,59E+00	6,46E-03	1,59E-03	MND	1,90E-05	2,24E-03	8,75E-03	3,63E-05	-3,06E-01						
EP-freshwater ²⁾	kg Pe	7,54E-03	2,55E-05	4,97E-04	8,06E-03	1,62E-05	3,18E-06	MND	3,53E-07	7,78E-06	3,66E-05	6,56E-08	-4,80E-03						
EP-marine	kg Ne	1,85E-01	3,34E-03	1,05E-02	1,99E-01	1,29E-03	6,60E-04	MND	2,52E-06	4,02E-04	2,00E-03	1,21E-05	-4,29E-02						
EP-terrestrial	mol Ne	2,95E+00	3,71E-02	1,43E-01	3,13E+00	1,43E-02	6,99E-03	MND	2,87E-05	4,50E-03	2,25E-02	1,32E-04	-4,87E-01						
POCP ("smog") ³)	kg NMVOCe	6,33E-01	1,21E-02	2,49E-02	6,70E-01	5,50E-03	1,80E-03	MND	7,85E-06	1,74E-03	6,21E-03	3,78E-05	-2,17E-01						
ADP-minerals & metals4)	kg Sbe	2,09E-02	1,36E-05	1,54E-04	2,11E-02	8,23E-06	1,19E-06	MND	3,06E-08	4,92E-06	8,30E-05	2,18E-08	-5,43E-04						
ADP-fossil resources	MJ	2,33E+03	5,07E+01	2,66E+02	2,65E+03	3,39E+01	2,39E+00	MND	7,05E-02	1,14E+01	1,01E+01	9,60E-02	-6,84E+02						
Water use ⁵⁾	m³e depr.	4,94E+01	2,45E-01	4,68E+01	9,65E+01	1,59E-01	4,88E-01	MND	1,87E-03	7,04E-02	2,03E-01	1,59E-03	-8,58E+00						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF


Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	1,25E-05	2,55E-07	6,00E-07	1,34E-05	1,83E-07	1,98E-08	MND	6,22E-11	4,48E-08	1,17E-07	6,18E-10	-3,57E-06						
Ionizing radiation ⁶⁾	kBq 11235e	1,19E+01	2,68E-01	1,08E+01	2,29E+01	1,78E-01	1,23E-02	MND	1,89E-03	6,45E-02	1,08E-01	4,66E-04	-4,10E+00						
Ecotoxicity (freshwater)	CTUe	8,21E+03	4,26E+01	1,89E+02	8,44E+03	2,83E+01	5,30E+00	MND	4,80E-02	1,06E+01	4,58E+01	6,09E-01	-1,52E+03						
Human toxicity, cancer	CTUh	4,18E-07	1,45E-09	7,37E-09	4,27E-07	8,69E-10	4,29E-10	MND	1,57E-12	4,22E-10	1,43E-09	3,71E-12	-1,24E-07						
Human tox. non-cancer	CTUh	9,98E-06	4,07E-08	1,46E-07	1,02E-05	2,77E-08	1,80E-08	MND	5,16E-11	9,75E-09	5,49E-08	2,05E-10	4,14E-06						
SQP ⁷⁾	-	5,71E+02	3,27E+01	8,98E+01	6,94E+02	2,41E+01	1,25E+00	MND	1,28E-02	5,64E+00	2,12E+01	1,80E-01	-1,39E+02						

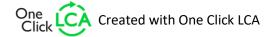
⁶⁾ EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	2,28E+02	7,76E-01	2,55E+02	4,84E+02	4,93E-01	7,97E-02	MND	1,40E-02	2,45E-01	1,57E+00	2,11E-03	-2,04E+02						
Renew. PER as material	МЈ	0,00E+00	0,00E+00	1,01E+02	1,01E+02	0,00E+00	-1,01E+02	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	2,28E+02	7,76E-01	3,55E+02	5,84E+02	4,93E-01	-1,01E+02	MND	1,40E-02	2,45E-01	1,57E+00	2,11E-03	-2,04E+02						
Non-re. PER as energy	MJ	2,30E+03	5,07E+01	2,63E+02	2,62E+03	3,39E+01	2,39E+00	MND	7,04E-02	1,14E+01	1,01E+01	9,60E-02	-6,76E+02						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	1,86E+00	1,86E+00	0,00E+00	-1,86E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of non-re. PER	MJ	2,30E+03	5,07E+01	2,64E+02	2,62E+03	3,39E+01	5,22E-01	MND	7,04E-02	1,14E+01	1,01E+01	9,60E-02	-6,76E+02						
Secondary materials	kg	6,00E+00	1,90E-02	1,06E+00	7,07E+00	1,15E-02	3,23E-03	MND	7,19E-06	5,98E-03	2,52E+00	2,37E-05	1,50E+01						
Renew. secondary fuels	MJ	2,99E-02	2,04E-04	7,79E-02	1,08E-01	1,27E-04	2,11E-05	MND	5,87E-08	7,15E-05	5,81E-04	2,00E-06	-4,05E-03						
Non-ren. secondary fuels	MJ	3,23E-20	0,00E+00	0,00E+00	3,23E-20	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	1,14E+00	6,60E-03	2,90E-01	1,44E+00	4,32E-03	2,93E-04	MND	5,95E-05	1,87E-03	5,58E-03	5,19E-04	-3,75E-01						

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE


Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	2,84E+01	6,17E-02	3,70E-01	2,89E+01	3,85E-02	3,59E-03	MND	2,54E-04	1,80E-02	7,00E-02	1,35E-03	-2,03E+01						
Non-hazardous waste	kg	3,57E+02	1,08E+00	7,97E+00	3,66E+02	6,85E-01	7,16E+00	MND	1,61E-02	3,32E-01	2,33E+00	5,59E-01	-1,18E+02						
Radioactive waste	kg	2,30E-02	3,48E-04	4,23E-03	2,76E-02	2,33E-04	9,12E-06	MND	5,10E-07	7,63E-05	5,99E-05	3,95E-08	-2,64E-03						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	1,74E+01	1,74E+01	0,00E+00	3,72E-01	MND	0,00E+00	0,00E+00	3,44E+01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	2,53E-02	2,53E-02	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	1,47E+00	1,47E+00	0,00E+00	1,30E+02	MND	0,00E+00	0,00E+00	0,00E+00	1,90E-01	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO₂e	1,88E+02	3,32E+00	4,31E+00	1,96E+02	2,26E+00	2,58E-01	MND	3,30E-03	7,70E-01	1,44E+00	2,53E-02	-5,67E+01						
Ozone depletion Pot.	kg CFC-11e	5,83E-06	6,05E-07	1,15E-06	7,58E-06	4,18E-07	2,31E-08	MND	1,46E-10	1,35E-07	7,74E-08	1,23E-09	-4,42E-06						
Acidification	kg SO₂e	1,24E+00	1,23E-02	3,09E-02	1,28E+00	5,30E-03	1,16E-03	MND	1,61E-05	1,85E-03	7,01E-03	2,76E-05	-2,62E-01						
Eutrophication	kg PO ₄ ³e	3,88E-01	2,18E-03	1,22E-02	4,02E-01	1,14E-03	1,10E-03	MND	1,24E-05	4,52E-04	4,47E-03	1,45E-05	-1,10E-01						
POCP ("smog")	kg C ₂ H ₄ e	7,08E-02	5,02E-04	1,76E-03	7,30E-02	2,68E-04	4,34E-05	MND	6,60E-07	9,78E-05	2,91E-04	1,29E-06	-3,10E-02						
ADP-elements	kg Sbe	2,09E-02	1,28E-05	1,43E-04	2,11E-02	8,04E-06	1,12E-06	MND	3,06E-08	4,81E-06	8,29E-05	1,75E-08	-5,39E-04						
ADP-fossil	MJ	2,28E+03	4,93E+01	2,63E+02	2,60E+03	3,39E+01	2,39E+00	MND	7,04E-02	1,14E+01	1,01E+01	9,60E-02	-6,83E+02						

ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	1,93E+02	3,45E+00	4,09E+00	2,00E+02	2,28E+00	2,63E-01	MND	3,33E-03	7,77E-01	1,42E+00	2,54E-02	-5,80E+01						

⁹⁾ This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

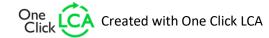
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

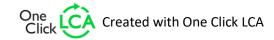
I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.


I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Lucas Pedro Berman, as an authorized verifier acting for EPD Hub Limited 15.09.2024



ANNEX I: DIFFERENT WEGA II CHILLED BEAMS IN LENGTH AND WEIGHT

WEIGHT

Length, aaa	120 cm ¹⁾	180 cm ¹⁾	240 cm	300 cm
Beam dry weight, kg	19	27	35	43
Beam water filled, kg	20	28	37	45

